



# DSN Network e-VLBI Calibration of Earth Orientation

L. D. Zhang a,b, A. Steppe a, G. Lanyi a, C. Jacobs a

Presentation at 5-th International e-VLBI Workshop
Westford, MA
September 19, 2006

- a. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- b. Columbus Technologies, Pasadena, California



## **Summary**



- Background: TEMPO
  - JPL navigation drives requirement of UT1 knowledge
  - Current tape-based TEMPO meets NAV requirement
     (5 day latency with 1 cm UT1 uncertainty)

#### e-VLBI TEMPO R&D tests

- Wide-band VLBI Science Receiver (WVSR) digital recording
- DSN T1-line (3Mbits/s) data transfer
- Software correlation
- Performed ~ 10 successful tests
- UT1 calibration of 1.5 day latency, ~ 1.5 cm uncertainty
- Test limitation

## Conclusion: performance to improve

- Coming T3-line (45Mb/s)
- Additional WVSR
- Platform upgrade and software automation





# **Background: TEMPO**

#### Earth Orientation UTPM

- GPS constellation provides continuous polar motion tracking
- VLBI remains the best method of calibrating UT1
- Deep space network Goldstone-Madrid baseline suited for measuring UT1
- JPL Time/Earth Motion Precision Observation (TEMPO) biweekly VLBI performed on this baseline
- JPL deep space navigation drives requirement of real time
   UT1 knowledge (30 cm)
- TEMPO designed to meet this requirement
- TEMPO is tape-based





# **Background: TEMPO**

- Facts about current operational TEMPO
  - TEMPO accurately measures UT1, to ~ 1 cm, at the time of calibration
  - But latency causes calibration to be less valuable
     Tape transit time, total turnaround can be up to 5 days
     UT1 real time knowledge error grows ~ 1 cm / day
  - Latency is key to improve UT1 real time knowledge
     Less accurate but quicker turnaround calibration can be better
  - Recent e-VLBI TEMPO test is designed to leverage existing Delta-e-VLBI (DDOR) infrastructure to obtain EOP data



# **Background: UT1 Knowledge Error**



- Current data latency enables ~ 5 cm UT1 real time knowledge error (at time of delivery)
- Example: a 2 cm calibration accuracy with 1 day latency enables
   ~ 3 cm UT1 real time knowledge error



Figure: UT1 error predicted by Kalman Earth Orientation Filter (KEOF). The error grows approximately ~ 1 cm per day. At 5 day latency, the knowledge error is ~ 5 cm. (Courtesy of Richard Gross)





## e-VLBI: WVSR TEMPO Overview

- Observation sequence design
  - Similar or shorter than TEMPO
- Digital Recording Instrument
  - JPL VLBI Science Receiver (VSR)
  - VSR bandwidth < 100 MHz</li>
  - Wide-band VSR (WVSR) bandwidth ~ 400 MHz
  - VSR for S-band, WVSR for X-band recording
- DSN T1-line (3Mbits/s) data transfer
- Software correlation on simple Solaris platform (4 processors)
- Fringe fitting (standard JPL 'Fit' code)
- MODEST analysis
- Obtain 2-component UTPM calibration
- Use an equivalent UT1 measurement error σ as performance metric





## e-VLBI: WVSR TEMPO Turnaround

#### WVSR TEMPO R&D test turnaround time

| Number of<br>Scans | Experiment<br>Duration<br>(h) | T1 Data<br>Transfer<br>(h) | 4-Processor<br>Parallel<br>Processing (h) | Fringe Fit &<br>MODEST (h) | Total<br>Turnaround<br>(day) |
|--------------------|-------------------------------|----------------------------|-------------------------------------------|----------------------------|------------------------------|
| 20 - 30            | 3                             | ~ 20                       | < 10                                      | < 3                        | < 1.5                        |
| 40 - 50            | 4 - 5                         | ~ 36                       | < 17                                      | < 3                        | ~ 2.5                        |





## e-VLBI: WVSR TEMPO R&D Tests

List of WVSR TEMPO tests recently performed

| Ехр Туре        | Exp Date | # of Scans | UT1 Meas. Error (cm) |
|-----------------|----------|------------|----------------------|
| WVSR TEMPO      | 06-057   | 19         | 1.37                 |
| TEMPO piggyback | 06-072   | 24         | 1.05                 |
| TEMPO piggyback | 06-106   | 25         | 1.15                 |
| WVSR TEMPO      | 06-162   | 23         | 1.87                 |
| WVSR TEMPO      | 06-174   | 26         | 1.70                 |
| WVSR TEMPO      | 06-177   | 43         | 1.21                 |
| WVSR TEMPO      | 06-180   | 44         | 1.05                 |
| WVSR TEMPO      | 06-181   | 50         | 1.11                 |
| WVSR TEMPO      | 06-193   | 28 •       | 1.33                 |
| WVSR TEMPO      | 06-234   | 44         | 1.37                 |





## **WVSR TEMPO Test Conclusion**

- R&D Test Initial Conclusion
  - 20 30 scan observation
  - 1.5 day latency (T1 line)
  - UT1 measurement error 1.52 cm (uncertainty ~ 1/sqrt(# of scans))
- Compare tape TEMPO: WVSR TEMPO accuracy slightly degraded ~ 20%, cause:

VSR S-band bandwidth limitation - 25 MHz, etc.

- But: e-VLBI has much quicker turnaround: 2 days vs. 5
- Performance WVSR-TEMPO better than tape-TEMPO better meets NAV requirement with latency improvement



## Conclusion



#### Current e-VLBI TEMPO limitation

- DSN network transfer speed 3 Mbits/s
- VSR instrument bandwidth
- # of processors for software correlation
- Processing is not automated

#### Coming improvements

- DSN T3 line installed 45 Mbits/s
- Additional WVSR to be installed
- Platform enhancement
   (Beowolf cluster bought, can add # of processors)
- Software automation planned

#### Future Prospect

Expect 1 cm accuracy and < 1 day turnaround</li>